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ABSTRACT

A study of the effects of secondary-treated wastewater on

periphyton growth in Lake Mead, Nevada-Arizona was conducted from

September 1979 to December 1980. Periphyton ash-free dry weight,

chlorophyll-a, dominant species composition, and alkaline phosphatase

activity were measured on fiberglass substrates. Substrates were

incubated for two to four weeks in littoral and limnetic habitats.

Physical and chemical variables and phytoplankton chlorophyll-a were

measured concurrently.

Transparency increased with increasing distance from the discharge.

Secchi depth ranged from 0.75 m at the discharge confluence (station 2)

in August, to greater than 20 m at the most distant stations (stations-9

and 10) in spring. Ortho-phosphorus (POij-P) and ammonia-nitrogen (NH3-N)

concentrations also followed this trend. Average POit-P concentrations

were 37 yg/1 at station 2 and 1-2 pg/1 at stations 9 and 10.

Ammonia-nitrogen concentrations averaged 84 pg/1 at station 2 and 3 ygA

at the distant stations. Nitrite and nitrate-nitrogen concentrations

were higher at the stations distant from the discharge because of the

influence of the Colorado River inflow. Phytoplankton standing crop,

estimated by chlorophyll-a, averaged 30 lJg/1 at station 2 and reached a

maximum concentration (105 ug/l) in summer. Phytoplankton standing crops

decreased with increasing distance from the discharge.
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Periphyton production in Lake Mead followed the same spatial trend

as PO^-P, NHa-N, and phytoplankton standing crop. The highest production

was measured at station 2,; near the discharge, and the lowest was

measured at station 9- Light was found to be the primary factor and

nitrogen the secondary factor controlling periphyton growth at station

2.

Nutrient concentrations are reduced by phytoplankton uptake and

dilution as the inflow moves toward Hoover Dam. Periphyton and

phytoplankton production was reduced accordingly. Nitrogen was the most

likely factor limiting periphyton growth at station 5- Nitrogen and

phosphorus were alternately limiting to growth at station 8. With

seasonal N:P ratios greater than 100, phosphorus was certainly a

limiting growth factor at stations 9 and 10 in the upper lake basin.

Phosphorus reduction by advanced wastewater treatment is being

implemented to reduce phytoplankton productivity in Las Vegas Bay, Lake

Mead. If light is limiting periphyton in Las Vegas Bay as evidence

suggests, and there is shading of periphyton by phytoplankton, reduction

in phytoplankton could result in an increase in periphyton.
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INTRODUCTION

Research Problem

High phytoplankton productivity in Las Vegas Bay, Lake Mead caused

concern for water quality during the late 1960's (FWPCA 1967, Hoffman et

al. 1967, EPA 1971). Early studies concluded that Las Vegas Wash

discharges of secondary-treated sewage effluents were responsible for

undesirable algal growth in the bay. EPA (1971) determined that

Federal-State water quality standards were being violated.

Clark County is currently constructing a 90 mgd Advanced Wastewater

Treatment Plant (AWT) to meet a 0.5 mg P/l standard adopted for Las

Vegas Wash by the Nevada Environmental Commission in 1973. The secondary

treatment plants now in operation have reduced the phosphorus

concentration of their effluents to 1 mg/1 using alum flocculation.

Controversy regarding the need for the 0.5 mg/1 standard arose because

of apparent improvement in Las Vegas Bay water quality from 1968 to

1978. The average chlorophyll-a concentration in Las Vegas Bay in 1968

was 35 Vg/1 with a maximum value greater than 80 yg/l (Paulson 1981).

Chlorophyll-a had decreased to an average of less than 10 yg/l in 1978

with a maximum concentration of 25 yg/l. In 1979 chlorophyll-a

concentrations began to increase again. The average value for 1980 was

approximately 30 yg/l. The highest concentration ever recorded (140

yg/l) occurred in summer 1982. This increasing trend can be related to



\d ammonia loading from Las Vegas Wash (Dr. L.J. Paulson,

personal communication). Phosphorus loadings have not increased above

1978 levels.

This controversy primarily revolved around effects of nutrients on

phytoplankton growth, but there were also complaints about periphyton

growth on beaches and boat hulls. The purpose of this study was to

determine effects of Las Vegas Wash discharges on the periphyton

community in Lake Mead. Periphyton has been widely used to monitor water

quality in rivers because the organisms are immobile and thus reflect

local environmental conditions (Butcher 1932, Weber and Raschke 197Q,

Patrick 1973, Lowe 1974, Cooper and Wilhm 1975). In contrast to

phytoplankton in lakes, little is known about critical concentrations of

nutrients controlling growth rates or standing crops of periphyton

(Brown and Austin 1973, Welch 1980). Periphyton and phytoplankton growth

peaks within a system are often out of phase (Jorgensen 1957, Wetzel

1964), indicating differential utilization of resources. This study

examined periphyton productivity in relation to physical and chemical

factors and to phytoplankton standing crop in Lake Mead.

Studies of Periphyton Growth Factors

The literal translation of periphyton is "around plants", however,

the term is frequently-used to describe the closely associated algae,

protozoa, bacteria, rotifers, and other microorganisms living associated

with or attached to a solid surface. Aufwuchs is a more appropriate term

for this intricate community (Wetzel 1975), restricting the use of

periphyton to the algae community attached to submerged materials
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(Wetzel and Westlake 1969). Periphyton is often the most important :i

primary producer group in lotic environments (Cooper and Wilhm 1975, ;

Cattaneo et al. 1975) and contributes various portions of the production

in lentic systems, depending upon the extent of the littoral zone and

other factors. Wetzel (1975) cites examples in which periphyton

production ranged from \% of total production in an oligotrophic lake to

62% in a shallow, rapidly flushed lake.

Many factors can influence the periphyton community including

light, substrate, water movement, pH, alkalinity, nutrients, metals,

:**"
temperature, salinity, oxygen, and carbon dioxide (tfeitzel 1979), but .-£

'if
most research has dealt only with physical factors. Mclntire and Phinney |SS

(1965) conducted research on periphyton grown in laboratory streams and *&.

found an almost linear relationship between light intensity and gross "̂

production until saturation intensity was reached between 1000-2000

ft-candles. They observed physiological and species compositional shifts v

in response to changing light intensities, and differences were observed-

between light-adapted and shade-adapted communities. Lowe and Gale

(1980) examined algae communities colonizing slate, acrylic, smooth

glass, and frosted glass in the Susquehanna River. They found a range in

percent similarity between each artificial substrate and river stone of

60 - 78%, the greatest similarity occurred with the slate. Patrick

(1973) found that glass slides sampled, the natural diatom community with

the exception of rare species. Reisen and Spencer (1970) examined diatom

colonization of glass slides as a function of current velocity. They

found an inverse relationship during initial stages of colonization and

a positive correlation over the long term. Pfeifer and McDiffett (1975)
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found currents enhanced photosynthesis in laboratory experiments. j

Whitford and Schumacher (1963) and Johnson et al. (1975) discuss

temperature effects on species distributions. In general, Chrysophyceae "1

have a low temperature requirement (below 15 °C). Most Bacillariophyceae

and Chlorophyceae grow best between 15 °C and 20 °C. Cyanophyceae do

well in high temperatures above 20 °C. There are numerous exceptions to

these generalizations, especially within the Bacillariophyceae which has

cold stenothermic, warm stenothermic, and eurythermic species.

Periphyton Productivity Methods

The periphyton community is heterogenously distributed and grows in "~jg

highly variable microhabitats. Consequently, it is difficult to sample .^

and researchers have attempted to standardize the physical environment "yBli,.3*3.
-*.••-•

and make quantitative analyses of this community using a variety of '?;?'

artificial substrates (eg. cement, styrofoam, plexiglass, glass, ceramic ~*

tile, wood, etc.). Glass slides have been the most widely used

substrates because of their uniformity and availability (Hentschel 1916

as described in Collins and Weber 1978, Newcombe 1950, Patrick et al.

1954, Sladecek and Sladeckova 1964, Cattaneo et al. 1975). Although

Patrick (1973) found that slides accurately reproduced the natural

diatom community, Castenholz (i960) found that some filamentous green

and blue-green algae did not readily colonize the smooth glass surface.

V

There are several methods of measuring periphyton productivity, but

biomass accumulation rate has been the most widely used technique

(Newcombe 1949, Castenholz 1960, Stockner and Armstrong 1971, Tilley and

Haushild 1975). Biomass measurements represent net production (Wetzel
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1965) resulting from gross production minus losses by respiration,

consumption, predation, death, and decomposition (Sladecek and

Sladeckova 1964). A change in biomass over time is one method of
>

measuring productivity (Ryther 1956); Young (1945) first applied it to

studies of periphyton growth on Scirpus in Douglas Lake, Michigan

(Sladecek and Sladeckova 1964). When a clean substrate is placed in the

water, accumulation is a result of colonization, cell growth, and

reproduction. Because accumulation is slow during the colonization

phase, biomass accumulation may represent low productivity estimates of

a well-established periphyton community (Cooper and Wilhm 1975).

Productivity is determined by:

P = mg AFDW
T A '

where productivity (P) equals mg of ash free dry weight (AFDW) of

periphyton expressed over the product of time (T) and area (A). Although

biomass accumulation on artificial substrates may not be an accurate

measurement of natural periphyton community productivity, it allows for

comparison of different locations in the lake under more standardized

conditions than would otherwise be possible.

^ Chlorophyll-a determinations are also used to estimate productivity

and standing crop of periphyton. This assumes that the rate of

photosynthesis is a function of chlorophyll-a content. McConnell and

Sigler (1959) point out that the use of chlorophyll-a to estimate plant

biomass is subject to errors caused by variation in the chlorophyll to

dry weight ratio (0.09 to 2.00$ of dry weight depending on the species

of periphyton). Analyses can be seriously impaired by chlorophyll

degradation products and appropriate corrections must be included in the



analyses (Wetzel 1963, Mclntire and Phinney 1965).

Oxygen evolution can be. used as an estimate of primary productivity

using the light- and dark-bottle method. This method is best suited for

eutrophic water where production is in the range of 3-200 mg C«m~2«h~~1

during the light period (Slack 1973)- An advantage of the light- and

dark-bottle method is that it provides a measure of both gross and net

productivity. Respiration is expressed for the whole community. Bottle

effects can create problems for accurate determinations of natural

productivity rates in both lentic and lotic environments. Enclosing

water in a bottle affects turbulence which in turn affects nutrient

availability. The closed system may also increase oxygen tension. If the

incubation period is too long, there may be bacterial growth on the

bottle surface causing the measurements to be invalid (Goldman 1968).

The utilization of carbon dioxide during photosynthesis can be

measured by pH changes in the water or by carbon-14 uptake. Carbon

dioxide uptake can be measured by recording pH changes and converting

/the changes to C02 concentrations (Verduin 1956). This method is not

applicable in well buffered systems and it is difficult to measure

periphyton productivity specifically with this method.

Periphyton productivity can be measured in situ with carbon-14

uptake in specially designed chambers (Loeb 1981). In lotic environments

this method must utilize chambers with forced circulation for accurate

measurements. The chamber is innoculated with labeled sodium carbonate

(Na2)lfC03) and the sample is allowed to incubate approximately one-half

the light period. The sample is then removed and analyzed (refer to
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Wetzel 1963 and APHA 1981 for detailed methods). Carbon-14 is more

sensitive than oxygen and carbon dioxide measurement techniques,

however, it is not known whether carbon-14 measures gross productivity,

net productivity, or something inbetween (Goldman 1968).

•s.



METHODS

Study Area

Lake Mead is a reservoir on the Colorado River. It was formed in

1935 by the construction of Hoover Dam, 15 km northeast of Las Vegas,

Nevada. It is the second in a series of four main stem reservoirs on the

Colorado River, including Lake Powell, Lake Mead, Lake Mohave, and Lake

Havasu. Lake Mead has the largest volume of any reservoir in the U.S.,

and is second in surface area only to Lake Powell. It is located in the

arid Mojave Desert region with an average annual precipitation less than

12.7 cm (Hoffman and Jonez 1973). A summary of the physical description

of the reservoir is presented in Table 1.

Lake Mead has two major basins, Virgin Basin and Boulder Basin,

connected by a narrow canyon (Fig. 1). The major inflow to Lake Mead is

from the Colorado River on the east end of the reservoir with lesser

• inflows from the Virgin and Muddy Rivers into Overton Arm, and from Las

Vegas Wash into Las Vegas Bay.

Las Vegas Wash was historically an intermittant stream, but

perennial flows developed due to~discharges of secondary-treated sewage

and industrial effluents. Las Vegas Wash contributes less than 1$ of the

total annual discharge at Hoover Dam (Goldman and Deacon 1978)., but it

provides 60% of the phosphorus input (Paulson et al. 1980). In contrast,

85$ of the inorganic nitrogen input is derived from the Colorado River



Table 1. Morphometry of Lake Mead, Nevada-Arizona

Maximum depth (m)

Mean depth (m)

Surface area (km2)

Volume (m3 x 109)

Maximum length (km)

Maximum width (km)

Shoreline development

Approximate storage (yr)

180

55

660

36

183

28

9.7

Source: Paulson et al. 1980
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Figure 1. Map of Lake Mead showing periphyton sampling stations.
Open circles are limnetic stations; solid circles are littoral
stations.
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V '% (Paulson et al. 1980). Nitrogen and phosphorus loadings to Lake Mead

r from Colorado River and Las Vegas Wash for the period from October 1977 ;.?

through September 1978 are presented in Table 2. Recent studies have !J;

shown that the upper basin is phosphorus deficient and Las Vegas Bay and

parts of Boulder Basin are nitrogen limited during summer (Paulson and

Baker 1980).

Sampling Stations and Frequency

Periphyton was collected at five limnetic and five littoral

stations in Lake Mead (Fig. 1). Stations 2 and 5 in Las Vegas Bay and ^i(tw

station 8 in Boulder Basin were located along a transect from the ic£~'
•;.;3JIK

wastewater discharge point of Las Vegas Wash. Station 9 in Virgin Basin :i$£

and station 10 in Bonelli Bay represent reference stations, unaffected ^u

by the wastewater discharges. Bonelli Bay is similar in morphometry to '.;j

Las Vegas Bay, but Detrital Wash, which enters the southern end of the •:..£

bay, flows only during storms.

Depth, aspect, and natural substrates are presented in Table J> for

each sampling station. Littoral station 10 was initially located due

west of the limnetic station on a gypsum deposit. It was moved to the

west shore of a small island, north of the limnetic station, in April

1980, when a storm caused the gypsum slabs to slough into the bay.

Limnetic samplers were used in an attempt to control variables

associated with littoral stations, such as substrate, shading, and

siltation. This allowed for better isolation of effects of chemical and

physical characteristics of the water body on the periphyton community.



Table 2. Nutrient loadings to Lake Mead, October 1977 through
September 1978.

13

NUTRIENT (kg/yr)

N03-N x 10s

NHj-N x 105

Total inorganic N x 10s

PO^-P x 103

Total-P x 10 3

N:P

Colorado

45.

1.

47.

56.

198.

83

LOADING

River Las

63

42

05

80

70

Vegas Wash

3-49

3.24

6.73

136.60

263.10

5

Source: Paulson and Baker 1980



14

Table 3. Lake Mead sampling station characteristics.

STATION

2

5

8

9

10

LIMNETIC

Depth*

12 m

47 m

142 m

135 m

43 m

Aspect

NE

E

E

S

sw

LITTORAL

Natural Substrate

boulders

mixed silt, gravel,

rock

mixed gravel, sand,

gypsum

gypsum

silt

*at lake elevation of 366 m above sea level
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Sampling was conducted for 16 months from September 1979 to the

beginning of December 1980. Artificial substrates were collected

approximately every two weeks with the exception of the period from

November 1979 through February 1980 when they were collected monthly.

Due to problems associated with sampler design, the first collection of

samples from limnetic stations 5, 8, and 9 was delayed until December

1979. Littoral station 9 was not established until April 1980.

Substrates, Incubation, and Collection Procedures

Fiberglass samplers were used as substrate because boat hulls are

the most common site of nuisance periphyton growth in Lake Mead.

Periphyton was collected on 5 cm x 15 cm fiberglass rectangles, with two

rectangles riveted to opposite sides of a polyvinylchloride (PVC) tube

(Fig. 2). These tubes in turn slid onto upright PVC tubes of smaller

diameter, holding the fiberglass substrates in a vertical position to

reduce the effects of siltation. For littoral stations the smaller

diameter support tubes were embedded in a cement slab which was placed

on the sediment surface at 2 m depth at station 2 and 3 m depth at all

other stations. The limnetic sampler support system consisted of an

H-shaped PVC tube structure supported by two buoys holding the

substrates at 2 m at station 2 and 3 m at the other stations. A cement

anchor held each sampler system in place. After difficulties were

encountered in relocating the limnetic sampler systems, a cross-line was

installed connecting the sampler systems to permanent navigation buoys.

For consistancy in light and temperature regimes the depth of all

samplers was adjusted as lake level changed during the year.

r-""S* *

"•Si

:::2l<
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Figure 2. In situ incubation apparatus for sampling periphyton
growth in the limnetic (1A) and the littoral (IB) zones of Lake Mead.

ti- ,

&
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Substrates wer.e collected by SCUBA divers and carefully brought to

the surface. Sloughing of periphyton was a serious problem at times, but

could not be reduced due to location of samplers in deep water. Clean,

acid-rinsed substrates replaced collected samples. Substrates were

placed upright in a frame in an ice-filled chest to keep them chilled

and in the dark, and to prevent disruption of substrate surfaces. An

atomizer filled with lake water was used to prevent dessication of the

substrates. Duplicate substrate units were collected from each station

on each sampling date.

Laboratory Methods

Dry and Ash-Free Dry Weight

Subsamples (25 or 50 cm2) were collected from the fiberglass

substrates with the edge of a glass slide and a rubber policeman and

rinsed into numbered and tared aluminum weighing dishes. Weighing dishes

were previously combusted at 550 °C for 1 h. The dish and sample were

then dried to constant weight (24 h) at 105 °C (APHA 1981) and weighed

to the nearest 0.1 mg to determine dry weight of the sample.

Dishes were then combusted in a muffle furnace at 550 °C for 1 h

(Vollenweider 1969). The ash was rewetted with distilled water to

reintroduce the water of hydration and dried to constant weight at 105

~°C (24 h). Dishes were weighed to the nearest 0.1 mg. Total weight after

drying minus the combusted weight was the AFDW, or organic content of

the- sample. Dry weight and AFDW were divided by the days of incubation

and expressed as mg«m~2«d~1. Inorganic sedimentation was substantial at
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times, consequently, AFDW rather than dry weight was used for

productivity estimates.

\a and Phaeophytin-a

Subsamples for chlorophyll-a and phaeophytin-a were collected in an

identical manner to that for dry weight. Subsamples were rinsed onto

Whatman GF/C glass fiber filters and filtered at 25 mm Hg to remove

excess water. Filters were folded in half, placed in screw-capped glass

centrifuge tubes, and frozen until analysis. Storage time was usually

about two days and never more than one week.

The methanol extraction technique of Holm-Hansen and Riemann (1978)

was chosen because it demonstrated that methanol had a better extraction

efficiency and shorter extraction time than acetone and eliminated the

need for sample horaogenization. Samples were brought to room temperature

in the dark. Ten milliliters of reagent grade methanol were added to

each centrifuge tube with a volumetric pipet. Samples were then stored •

in the dark at room temperature during the 1 h extraction. The

filtration step reported at this point in the procedure of Holm-Hansen

and Riemann (1978) was replaced with a 10 min centrifugation to clear

the solution.

An aliquot of the supernatant (3«2 ml) was transferred to a 1 cm

pathlength cuvette. Absorption was read on a Coleman 55

spectrophotometer against a methanol blank at 750 nm and 665 nm before

and after acidification with 105 yl of 0.1 N HC1. The neutralization

step of Holm-Hansen and Riemann (1978) was deleted and compensated for

by a correction factor which allows for the absorbance shift occurring
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in phaeophytin-a at a given pH. Chlorophyll-a and phaeophytin-a were

calculated using Tett's formulas (1975, 1977):

Chl-a(mg-m~2- d'1) =_G_£(EU- EA) - JGEA(H - 1)] v / t
1-GJ V

- - A U
Phaeo-a(mg*m 2- d Ms G (HE - E ) • v. / t

1-GJ V

where G = 0.029 cm-rag • ml"1

J = 5-9 ml*cm 1*mg *

H = 2.0

E = absorbance at 665 nm before acidification, corrected for background

absorbance at 750 nm

E = absorbance at 665 nm after acidification, corrected for background

absorbance at 750 nm

v = extraction volume (ml)

V = subsample area (m2)

t = incubation time (d)

Note: G, J, and H are constants determined by Robert C. Furtek, USEPA,

EMSL-LV, Las Vegas, Nevada using methods in Tett (1975).

Alkaline Phosphatase

Perry's (1972) sensitive fluorom,etric method as modified by Shapiro

(University of Minnesota) was used for assay of alkaline phosphatase

activity (APA). APA is measured as an increase in fluorescence as the

substrate, 3-0-methylfluorescein phosphate, is hydrolyzed to the more

fluorescent product, 3-0-methylfluorescein. Results are reported as

nmoles POit released per square meter per minute.

Upon return to the laboratory after field collection, a 2 cm



21

subsample was collected from one substrate unit of each limnetic station

with a glass slide and rubber policeman. This subsample was dispersed in

100 ml of distilled water. A set of six test tubes (Bausch and Lomb

Spectronic 20 colorimeter) was prepared for each station. Six

milliliters of sample and 2 ml Tris buffer were pipeted into each tube.

Shapiro's modification added 300 rag MgCl2/l of buffer. Three tubes from

each station were blanks; 1 ml EDTA was added to these. All tubes were

then placed in a 25 °C water bath in the dark where they remained during

analysis. A Turner 110 fluorometer with a 47B primary filter [Wratten

gelatin filter (Kodak), cat. no. 14-9 5795] next to the lamp and a

combination of 2A [Wratten gelatin filter (Kodak), cat. no. 164 4988]

and 12 [Wratten gelatin filter (Kodak), cat. no. 149 5522] secondary

filters near the photomultiplier tube was used for the analysis. One

milliliter of substrate was added to each tube, and the fluorescence was

read after thorough mixing of the sample. Blanks were read at 0 and 30

min; samples were read at 0, 15, and 30 rain. After 30 min, 1 ml EDTA was

added to the samples, they were mixed, and the fluorescence read again.

A standard curve was calculated using dilutions of 3-0-methylfluorescein

(Sigma M7004). Sample activity was determined after subtracting the

average fluorescence of the three blanks. Detailed methods including

preparation of standards and substrate are presented in Kellar et al.

(1980).

Species Composition

Periphyton was scraped from the substrate with the edge of a glass

slide and a rubber policeman and preserved in polyethylene bottles with

Lugol's solution. Samples were stored in the dark until analysis.
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A slide for diatom species identifications was prepared by placing

several drops of the sample on a glass coverslip and evaporating it to

dryness on a hot plate. The ̂residue was then incinerated in a muffle

furnace at 550 °C for 20 min and mounted in Hyrax on a glass slide.

Identifications were made at 1000 magnification.

A wet mount was examined at 450 magnification in a Palmer-Maloney

counting chamber, and the first 200 cells encountered were recorded.

Cell volumes were calculated for dominant species by approximation of an

appropriate geometric shape. The species were ranked by relative cell

volume and the top five species were reported as the dominants. A

species also had to represent at least \% of the total cell volume to be

considered dominant. If fewer than five species attained a minimum of \%

each of the cell volume at a station, then fewer than five species are

reported for that date. When the community was comprised of tightly

interwoven, filamentous forms that could not be dispersed, ranking of

dominant taxa was visually estimated.

Chemical and Physical Measurements

Chemical and physical measurements referred to in this thesis and

methods of determination are listed in Table 4. Measurements were

performed by the staff of Lake Mead Limnological Research Center,

Department of Biological Sciences, University of Nevada, Las Vegas using

methods described in Kellar et al. (1980). Data presented are 0-5 m

depth integrated values.

-• .
'•>*
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Table <4- Chemical and physical measurements and methods of
determination.

PARAMETER METHOD

temperature

transparency

PO^-P

NH3-N

N02+N03-N

phytoplankton chl-a

Hydrolab

secchi disk

modification of Strickland and Parsons
(1972) and Goldman (1974)

modification of Liddicoat et al. (1975)

modification of Kamphake et al. (1967)

modification of Golterman (1969) and
Strickland and Parsons (1972)



RESULTS

Seasonal and Spatial Variations in Physical Factors

Temperature

Spatial temperature variations in Lake Mead were minimal during the

study, therefore, temperatures at station 2 are presented as

representative of the lake (Fig. 3). Temperatures are an average of

values from the surface to 5 m at 1 m intervals. A minimum temperature •

of 11.5 °C occurred in January and a high value of 30.5 °C was recorded

in July. Destratification began to occur in September, and the reservoir

was completely mixed by late December 1979« Thermal stratification

developed in June 1980 with the thermocline at 10-15 m.

Transparency

Secchi depths recorded at the five stations during this 16 month

study are presented in Fig. 4» Generally, greatest values were recorded

in spring, then decreased through summer and fall, and increased again

late in fall. Secchi depth increased with increasing distance from the

Las Vegas Wash throughout the year. Values recorded in Bonelli Bay

(station 10) were usually slightly -less than in Virgin Basin (station-

9). Measurements ranged from 0.75 m at station 2 in August to greater

than 20 m at stations 8 and 9 during spring.

I
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1

Figure 3. Temperatures (°C) at station 2 from September 1979 through
November 1980. Values are averages from the surface to 5 m measured
at 1 m intervals.
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f̂

f
i

Figure 4. Secchi depths (m) at five stations from September 1979
through November 1980.
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Seasonal and Spatial Variations in Nutrients and Phytoplankton

Nutrients ,;

Ortho-phosphorus

Ortho-phosphorus (POi,-P) concentrations at station 2 were highly

variable ranging from 4 to 312 yg/1, with the maximum occurring in

February (Fig. 5)- The average concentration was 37 ^_ 1 yg/1 (S.E.) for

the 16 month sampling period. Ortho-phosphorus concentrations at station

5 were less variable and averaged 6 _+_ 0.5 yg/1 for the study period.

Ortho-phosphorus concentrations at stations 8, 9, and 10 were similar

and seasonal variations were minimal. Average PO^-P concentrations were

1-2 yg/1 and values less than 1 occurred during late summer and fall

1980 at these stations.

There was a trend of decreasing PO^-P with increasing distance from

the Las Vegas Wash (Fig. 8), and station 2 usually had concentrations

that were an order of magnitude higher than other stations. This was due

to high phosphorus loading from Las Vegas Wash.

Ammonia-nitrogen

1

Ammonia-nitrogen (NH3-N) concentrations at station 2 were highly

variable and ranged from 3 yg/1 on May 14, to 472 yg/1 just one week

later (Fig. 6). This pulse was probably a result of wind induced mixing

after the lake had begun to stratify. The average value for the study

period at this station was 84 ^_ 15 yg/1- Ammonia-nitrogen concentrations

at station 5 were lower and seasonal trends were more distinct than at
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Figure 5. Ortho-phosphorus concentrations (ug/l) at five stations from
September 1979 through 1980.
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Figure 6. Ammonia-nitrogen concentrations (ug/l) at five stations from
September 1979 through November 1980.
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station 2. The average concentration was 10 + 2 yg/1 with a gradual

increase through the fall and winter. Ammonia-nitrogen concentrations

decreased rather abruptly in spring as the lake stratified and

phytoplankton productivity increased. Concentrations became very low (<3

yg/l) during summer and early fall months. The average NH 3-N

concentration at station 8 was 5 ĵ  0.5 yg/1, also with highest levels

occurring in late fall and winter months. Stations 9 and 10 both had

average concentrations of 3 ĵ  0.5 yg/1, showing little seasonal

variation. Ammonia-nitrogen concentrations also decreased with

increasing distance from Las Vegas Wash (Fig. 8).

Nitrite and nitrate-nitrogen

Nitrite and nitrate-nitrogen (NOz+NOa-N), unlike the other

nutrients, showed a distinct seasonal pattern. Concentrations

progressively increased from late fall to spring, and then gradually

decreased to low levels during summer and early fall (Fig. 7). The

average N02+N03-N concentration at station 2 was 128 +_ 15 yg/1- Station

5 had an average value of 74 ^_ 12 yg/1 and an extended period of

depletion during the summer. The average N02+N03-N concentration at

station 8 was 84 ĵ  12 yg/1 and depletion occurred in late summer and

early fall. Concentrations recorded at stations 9 and 10 were highest

and averaged 166 +_ 18 yg/1 and 144 _+_ 11 yg/1, respectively. Seasonal

N02+N03-N concentrations are "presented in Figure 8.

Phytoplankton

Phytoplankton standing crop, estimated by chlorophyll-a

concentration, was highly variable at station 2 (Fig. 9). Standing crop
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Figure 7. Nitrite and nitrate-nitrogen concentrations (ug/l) at five
stations from September 1979 through November 1980.
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fi...-,•*!

Figure 8. Average seasonal nutrient concentrations (ug/l) at five
stations from December 1979 through November 1980. Error bars are one
standard error. ND is no data. W, S, S, and F under the bars
correspond to winter, spring, summer, and fall, respectively. j; S
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began increasing in spring, reached a maximum value (105.2 yg/l) in

summer, and decreased into fall. Minimum standing crop occurred in

winter. Stations 5 and 8 were less variable, having maximum

phytoplankton standing crops in fall (28.0 and 13«9 yg/l, respectively)

(Fig. 10). Standing crops were low at stations 9 and 10 throughout the

year (Fig. 11).

Phytoplankton chlorophyll-a concentrations were greatest at station

2 and decreased rapidly with increasing distance from Las Vegas Wash.

Averages for the study period for stations 2, 5, 8, 9, and 10 were 29-5

+_ 3.6 yg/l, 6.4 _+ 0.9 yg/l, 2.9 +, 0.5 yg/1, 1.0 +. 0.1 yg/i, and 1.0 _*

0.1 yg/1, respectively.

Seasonal and Spatial Variations in Periphyton

is Biomass Accumulation Rate
f

| Periphyton productivity at limnetic station 2 was highly variable,

but consistantly had the greatest productivity each season. Maximum

growth of 1072 mg.m~2«d~1 occurred in May (Fig. 9). The next greatest

productivity occurred at station 5 with the exception of station 8

during winter, resulting from a large population of Cymbella affinis.

Productivity at station 5 was less variable than at station 2, but peaks

of 554 and 821 mg*m 2*d l occurred in May and December 1980,

respectively (Fig. 10). Except 'for-winter, stations 8, 9, and 10 had

similar patterns, and average seasonal productivities were less than 100

mg AFDVf«m 2«d 1. Maximum productivity occurred at station 8 (295

mg«m~2-d~1) in December 1979 (Fig. 10). A second, lesser peak of



Figure 9. Phytoplankton chlorophyll-a concentrations (yg/l) and
periphyton chlorophyll-a (mg-nT^d"1) and ash-free dry weight
(mg-m 2.d~1) accumulation rates at station 2. Open circles are the
limnetic station and dark circles are the littoral station.
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Figure 10. Phytoplankton chlorophyll-a concentrations (yg/l) and
periphyton chlorophyll-a (mg-m"2^"1) and ash-free dry weight
(ing-nT^d"1) accumulation rates at stations 5 and 8. Open circles
are the limnetic stations and dark circles are the littoral stations.
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Figure 11. Phytoplankton chlorophyll-a concentrations (yg/l) and
periphyton chlorophyll-a (mg-nT^d"1) and ash-free dry weight
(mg-nT^d"1) accumulation rates at stations 9 and 10. Open circles
are the limnetic stations and dark circles are the littoral stations.
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185 mg»ra~2»d~1 occurred in August. Productivity peaked earlier in the
M"

summer at stations 9 and 10 with 186 mg«m~2«d~1 and 178 mg«m~2-d~1 in

June, respectively (Fig. 11). There was a secondary growth peak of

139 mg«m~2«d~1 at station 10 in March. Data are not available for

station 9 during this time period.

Littoral stations exhibited somewhat different seasonal

productivity patterns than limnetic stations (Fig. 12). Station 5 had a

well developed blue-green mat community which was responsible for

greater productivity than occurred at station 2 during summer. Spring

data are not available for station 2 because of vandalism of samplers.

However, fall biomass accumulation was greater than summer in the

littoral habitat. This was due to a large bryozoan population, not

periphyton, as reflected by the chlorophyll-a data. The winter peak

observed at limnetic station 8 was not present in the data for the

littoral habitat. Littoral station 9 had high growth in August

(128 mg*m 2«d 1), a month after productivity had declined in the

limnetic habitat (Fig. 11).

Littoral stations would be expected to have a greater biomass

accumulation rate than limnetic stations because they are in close

proximity to natural substrates and the seed population. This was

generally observed at stations 8, 9> and 10 (Figs. 10 and 11). However,

at station 2 the rate was lower in the littoral habitat (Fig. 9)- This

may have been due to a reduced period of light caused by the steep

walled cliff rising above the station, but measurements were not made to

evaluate this effect. The higher accumulation rate at station 5

alternated between the limnetic and littoral habitats. No consistant



differences in nutrient concentrations between the two habitats were

observed during several intensive surveys conducted during this study

(Brown and Caldwell 1982).

Periphyton productivity in Lake Mead, as estimated by biomass

accumulation rate, showed a decreasing trend with increasing distance

from Las Vegas Wash. A summary of average seasonal AFDW accumulations

for limnetic and littoral stations is presented in Fig. 12. Data for

fall 1979 and December 1980 are not included because missing data points

prevented comparisons between stations.

••' JSfi

Incubation Period . :' '*"

When biomass accumulation rates are compared between two week and fn

.>'«!
four week substrate incubations, the longer incubation period generally ;;"|

:! iilll

resulted in greater accumulation rates (Appendix A). Accrual rate on |ljl
-I'M

:.i
artificial substrates generally follows a sigmoid curve with the lower .»»

i'tll

part representing initial colonization and the upper part representing

growth of an established community (Tilley and Haushild 1975)- Assuming

an established community has not been attained, the slow colonization

phase becomes less evident when accrual rates are calculated from a

longer incubation period. As a result, the two week incubation is

probably a low estimate of productivity of the natural periphyton

community. Two week and four week incubations were most comparable

during the higher productivity intervals of spring and summ§r. These

findings are in contrast to Castenholz (i960) who found two week and

four week incubations comparable during low production periods, while

slightly higher accrual rates occurred on the four week substrates



Figure 12. Average seasonal periphyton biomass accumulation rates
(mg-nT^d"1) from December 1979 through November 1980. Error bars
are one standard error. ND is no data. W, S, S, and F under the
bars correspond to winter, spring, summer, and fall, respectively.
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during higher spring production. Evidence of sloughing of periphyton was

frequently observed on substrates incubated four weeks in my study.

Sloughing results in underestimation of production.
\n Chlorophyll-a Production

Periphyton chlorophyll-a production also decreased with increasing

distance from Las Vegas ¥ash (Fig. 13). Station 2 had the greatest

chlorophyll-a production rates with a maximum value of 9.20 mg.m"2^"1

in May (Fig. 9). A secondary peak was observed in fall 1980, reaching

5.68 mg.m~2.d~1 in November. The May maximum corresponded to a biomass

Station 5 had chlorophyll-a peaks in May and December 1980 (Fig.

10). These maximum concentrations were 3-55 mg«m 2*d 1 and 8.23

mg»m~2»d~1f respectively. The annual pattern of chlorophyll-a production

* corresponded well with that of biomass accumulation rate at this
'*•
T

station. Stations 8, 9, and 10 had much lower rates of chlorophyll-a
— iy *• i

production. The maximum value recorded at station 8 was 1.81 mg*m *d

in the littoral habitat during November 1980 (Fig. 10). The

chlorophyll-a peak at station 9 was 0.43 mg«m 2«d * at the limnetic

station in December 1980, but values were at the lower level of

detection (0.02 mg.m~2«d~1) during most of the year (Fig. 11). The

"~~ littoral station had higher concentrations, averaging 0.01 + 0.02

All

accrual maximum, but there did not appear to be a similar relationship •'•*"
'. j'»«

in fall. Lack of a good relationship between biomass and chlorophyll-a ^

is due to the numerous variables affecting pigment concentration such as
;|p

light, nutrition, and species composition (McConnell and Sigler 1959, !."ai
M:.'j!«''

Wetzel 1963, Mclntire and Phinney 1965). l"a"
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Figure 13- _Average seasonal periphyton chlorophyll-a accumulation
rates (mg*m~ ̂d"1) from December 1979 through November 1980. Error
bars are one standard error. ND is no data. W, S, S, and F under
the bars correspond to winter, spring, summer, and fall, respectively.
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mg-nT^d"1 for the study period. Station 10 also had very low levels of

chlorophyll-a at the limnetic station with the exception of

1.09 mg'nT^d"1 measured in December 1980 (Pig. 11). The remainder of

the year averaged 0.04 ̂  0.01 mg«m~2«d~1. The littoral habitat generally

had higher chlorophyll-a concentrations averaging 0.23 ±_ 0.05 mg-m 2«d l

with peak values of 0.88 mg«m~2»d~1 and 0.64 mg«m~2«d~1 occurring in

January and July, respectively.

Alkaline Phosphatase

Alkaline phosphatase is a membrane bound enzyme system, produced in

many algae. It hydrolyzes phosphomonoesters such as adenosine

monophosphate and glucose-6-phosphate extracellularly and assimilates

only the phosphate radical, leaving the organic portion in solution

(Kuenzler and Perras 1965, Kuenzler 1965). Alkaline phosphatase activity

(APA) in phytoplankton has been shown to increase rapidly upon

phosphorus depletion (Kuenzler and Perras 1965, Healey 1978, Perry 1972,

Healey and Hendzel 1975), and enzyme synthesis is repressed in surplus

phosphorus conditions (Kuenzler and Perras 1965, Jansson 1976).

An inverse relationship between PÔ P and planktonic APA has been

observed in Lake Mead (Kellar and Paulson 1981). There was no measurable

activity in Las Vegas Bay where high levels of PO^-P enter Lake Mead

from Las Vegas Wash. However, PO^-P concentrations decreased with

increased distance from the Wash, and APA increased significantly along

this gradient.

The periphyton community was analyzed for this enzyme to determine

if it responded similarly to changes in PO^-P availability. Alkaline

llllili

til
i'.tf
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phosphatase activity was normalized for differences in periphyton growth

by dividing by AFDW. Seasonal distributions in APA were erratic. Station

10 had the lowest POi»-P concentration, and the greatest APA/AFDW (x =

19.92 x 1Cf* nmoles PO^ • min'̂ rag AFDW"1) (Table 5). Conversely,

station 2 had the highest PO^-P concentration, and the lowest APA/AFDW

(x = 1.81 x 10"1* nmoles POH • min~1»mg AFDW"1)- Station 5 had the second

highest APA/AFDW (x = 10.60 x 10"1* nmoles PO^ • min'^mg AFDW'1)- This

was a result of high APA/AFDW during April - June that coincided with

Cymbella affinis dominance. This diatom produces copious amounts of

stalk material that was observed to be heavily colonized by bacteria.

The bacteria may have been contributing to the high APA.

Despite this general trend, no statistically significant

relationship between PC^-P and APA could be established. The absence of

a significant relationship between PO^-P and APA may be related to

growth characteristics of the periphyton community. During high

productivity periods, growth on artificial substrates was up to 1 cm

thick. This may create a microenvironment with different nutrient

regimes available to organisms inhabiting lower layers than to those in

surface layers. Ortho-phosphorus may be available to surface inhabiting

organisms, but limiting in lower layers, thus increasing APA. When the

assay is performed APA may be measured from subsurface organisms,

resulting in an erratic relationship between APA and PO^-P.

Species Composition

A summary of spatial and seasonal distributions of selected

dominant periphyton species observed during this study is presented in
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Table 5. Alkaline phosphatase activity (APA/AFDW) x 10 "* in periphyton*.

Date

10-03-79

10-23

11-21

12-20

1-25-80

3-25

4-15

5-02

5-15

5-29

6-16

6-30

7-25

8-07

8-21

9-08

9-23

10-07

10-20

11-06

11-20

12-09

X

2

1.1

1.2

13-3

2.0

0.9

0.9

2.3

0.9

0.3

3.0

2.0

0.6

1.2

0.5

0.1

3.8

1.2

1.2

1.4

1.3
0.2

0.5

1.8

5

5.3

0.7

0.9

73-3

4.3

5.0

20.1

27.7

4.9

7.1

4.4

7.6

12.8

5.8

1.7

7^6

0.8

0.6

10.6.

Station

8

37.4

2.0

ND

12.5

1.9

ND

1.7

1.0

0.8

6.7

12.3

11.4

19.8

0.3

4-3.

7.5

9

6.7

4.4

2.7

ND

7.4

1.8

ND

4.7

0.2

ND

26.8

0.4

0.7

1.7

ND

3.8

10

10.4

24.1

105.9

7.2

ND

5.2

1.5

2.6

0.8

0.2

8.4
3-2

68.9

47.6

49.9

2.8

ND

19.9

* units are nmoles POif'inin *mg AFDW
ND equals nondetectable
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Table 6. A complete list of all species that occurred as dominants

during this study is presented in Appendix B. Dominance is defined as

the top five species ranked by cell volume. Each species must also

represent greater than 1 % of the biomass in the sample to be considered

dominant. Species colonizing limnetic samplers after two week

incubations were true periphytic species, not opportunistic planktonic

species as Wetzel and ¥estlake (1969) suggest. Vertical positioning of

the samplers was probably responsible for precluding plankton from

settling and establishing on the artificial substrates. Limnetic and

littoral habitats had similar patterns of dominant species at each

station.

Several species were notable for their predominance. Cymbella

affinis dominated the community at stations 5, 8, 9, and 10 from about

midwinter until June or July when Mougeotia became dominant (station 9

data available beginning April). Mougeotia is reported to thrive in

oligotrophic water (isrealson 1949 as cited in Gwendling 1971). It

remained dominant through the end of the study (December 1980) at

stations 8, 9, and 10. Dominance at station 5 changed to Stigeoclonium

and Cladophora between October and November. At station 5, the green

filaments were found in a mat community with blue-green filaments, the

latter often exceeded the greens in cell volume.

Species composition was distinctly different and changed more

frequently at station 2. Synedra ulna was dominant in late September and

early October 1979- Greens dominated from late October through winter.

Stigeoclonium was found with diatoms and blue-greens through early

summer. The community then became dominated by diatoms until December
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Table 6a. Seasonal distributions of selected periphytic species at
limnetic stations. Numbers correspond to stations.

TAXA S O N O J F M A M J J A S O N D

BAClLLARlOPHrTA

Aehnanthu minutiifima
s s

8 8 8 8
9 9

10

Cymbtlla affinit

C. mi

10 10 10
9 9 9 9 9 9

10 10 10 10

2 2 2
S 5 5 5 5
8 8 8 8 8

9 9
10 10 10

S S
8 8
9 9 9

10

C. putilta

10 10

8 8
9 9 9 9 9 9

10 10 10 10 10

2 2 2 2 2

2 2 2 2 2

Gcmphonma. oliuaaeun
S 5
8 8

Naatogloia. mithii

Htlo9i.ru uariomi 2 2 2 2
S

Navicula aincta 2 2 2 2 2

danticulti

9 9
10 10 10 10 10 10

continued
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TAXA S O N O J F H A M J J A S O N O

jr. palia 2 2 2 2 2

Synidrv ulna

CHIOROPHYTA

Ctadophara sp.

2 2 2 2 2 2 2 2
5 5 5 5 5 5 5 5
8 8 8 8
» 9 9

10 10 10 10 10

5 5

Mougtotia sp.

Otdogmiu* sp.

10 10 10

2

5 5 5 S 5 5
8 8 8 8 8

9 9 9 9 9 9
10 10 10 10 10 10 10

.liiiliii

Oooytti* 2 2 2

10

Plaotemana

Spirogyra sp.

10

2 2 2

10

2
5 5
8
9 9 9

10

Stigtoclan-iim sp.

10

2 2 2 2

CYAMUPHIfTA

Lyngbya atttuirii

ffiormidiu* fxvoem
2 2

SpinLina
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Table 6b. Seasonal distributions of selected periphytic species at
littoral stations. Numbers correspond to stations.

TAXA S O N D J F H A M J J A S O N D

SACRUM [QPHifTA
Aahnmth** •rtnut

Anaaoionti*

Cyobtlla. affviit

C. miaroetpliala

C. mimta

C. ptailla

10 10 10

8 8

10 10

10 10 10

5 5
8 8

9 9 9 9 9 9
10 10 10 10 10 10

5 5 5
a s
9 9

10 10

5 5

9
10

8 8

C. tuaida

9 9 9 9 9 9
10 10 10 10 10 10

Z Z

Fmgitaria aapuoina

Gamphenena intricate*

G* olio&caun

2 2

8 8
9 9 9 9 9

Maacogloia onithii

8 8

10 10

Z Z

Naviaula cinata

Nitzeahia

9 9 9
10 10 10 10 10 10
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TAXA S

AT. palm 2

Syn*dra vino. 2

CHLOROPHYTA

Cladophora sp.

Mougtotia sp.
5
8

10

Ofdogonian sp. 2

8

Ooaytti* gigaf
S

Plfotoruna lautarborinii

Spirogyra sp.

CYAMOPHYTA

Lyngbya a«*tuarit

Phonaidiua favotun

0 N D J

5

2 2

10 10

2

2
S
8 8 8

10 10 10 10

2
S S
8

2 2 2
S S S
8 8 8

10

10

2 2 2
5 S

5 5

5

F H A M J J A S 0

2 2
5 5 5

10

2 i:
5 5 5
8 8 8

9 9
10

2
S 5

8 8 8 8
9 9 9 9

10 10 10 10

2
S

8 8
9 9 9 9

10

2 2
5
8 8

10

5

2
5 5 5 5 5 5

8
9

5 5 5

N

5

2

8
9

9

2
5
8

2

8

S

S

2
5

D

9

9

2

up:

major1

10

5 S

10



when Stigeoclonium reappeared. Mougeotia was. conspicuously sparse.

A tally of taxon, whose distributions as a dominant were limited to

one station, indicates station 2 was the most unique with 19 taxa found

only at that location. Stations 5, 8, 9, and 10 had 4, 4, 1, and 3

unique taxa, respectively. Stations 2 and 5 appeared different from

other stations in several respects. They were the only stations where

blue-green algae were dominant taxa in every season. Blue-green

filaments were an especially important component at littoral station 5

which was often characterized by a dense blue-green mat community.

Blue-green algae were dominant at all stations, except limnetic station

9, at least once during the study period. The diatom Gomphonema parvulum

was found only at stations 2 and 5 (Appendix B). Lowe and McCullough

(1974) found this species to be favored by sewage effluent. Melosira

varians is an indicator of eutrophic conditions (Reimer 1965) and was

also limited in distribution to stations 2 and 5« Conversely, Stockner

and Armstrong (1971) consider Achnanthes minutissima to be

characteristic of the littoral zone of oligotrophic, temperate lakes; '

this diatom was found as a dominant species everywhere in Lake Mead,

except station 2.

Contrary to APHA (1981), I did observe adult thalli of

Stigeoclonium after only a two week incubation. Adult Cladophora was

found growing on the rough cut edges of the fiberglass substrates, but

not on the smooth face that was sampled. This indicated the substrate

was not suitable for attachment, rather than an insufficient incubation

period or the reproductive nature of the genus as Castenholz (1960)

suggests. These taxa were found only at stations 2 and 5 on the



artificial substrates, but were observed lake-wide on natural

substrates.



DISCUSSION

Periphyton productivity in Lake Mead is similar to that reported

for other lakes and reservoirs (Table 7). Lake Kinneret has nitrogen and

phosphorus concentrations comparable to those at Lake Mead stations 5

through 10.

Periphyton production in Lake Mead followed the same spatial trend

as PO^-P, NH3-N, and phytoplankton standing crop. The highest production

was measured in Inner Las Vegas Bay (station 2), and the lowest in

Virgin Basin (station 9). The greater phytoplankton standing crop (as

chlorophyll-a) at station 2 reduced secchi depth during the summer to

above the 2 m sampler depth (Fig. 4). All other stations had secchi

depths below sampler depth ("5 m), with the exception of station 5 on two

dates. Phytoplankton and periphyton increased at station 2 in spring,

but periphyton declined in early summer while phytoplankton continued to

increase. When phytoplankton declined in fall and secchi depth increased

to 2 m, periphyton chlorophyll-a increased (phytoplankton chlorophyll-a

and periphyton chlorophyll-a: r=-0.93, p=0.004) (Table 8), but AFD¥ did

not. The increased ratio of chlorophyll-a to AFDW could not be

attributed to changes in species composition. The gradual nature of the

increase could reflect a response to decreased light intensity (Mclntire

and Phinney 1965). This was not observed at other stations. The distinct

alternation between periphyton and phytoplankton growth peaks at station



Table 7. Periphyton productivity in Lake Mead and other lentic systems.

LOCATION SUBSTRATE PRODUCTIVITY
T^d"1)

REFERENCE

Lake Mead, NV-AZ

Las Vegas Bay, Lake Mead (sta. 2)

Bonelli Bay, Lake Mead (sta. 10)

Soap Lake, WA

Sedliee Reservoir, Czech.

Lake Kinneret, Israel

Lake Tahoe, CA-NV

Lake Tahoe, CA-NV

fiberglass

fiberglass

fiberglass

glass

glass

glass

glass

styrofoam

x = 171

x = 401

x = 44

x = 167

x = 213

x = 220 .

0.2-4.4

17.1 max.

present study

present study

present study

Castenholz I960

Sladecek & Sladeckova

Dor 1970

Goldman 1974

Flint 1977

- .

1964
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Table 8. Pearson correlation coefficients for periphyton and
environmental parameters.

Station

2

5

t

8

9

10

Season

fall 1979

spring 1980

fall 1980

spring 1980

summer 1980

fall 1980

spring 1980
summer 1980
fall 1980

fall 1980

spring 1980

Independent
Variable

PO -P
secchi *
NH -N
PCHL **
NO +NO -N
temperature
secchi
PCHL

secchi
PCHL
PO -P
temperature
secchi
PCHL
NH -N
temperature

PO -P
NH -N
PCHL

NH -N

PO -P
NO +NO -N
temperature
secchi
PCHL

Dependent
AFDW r(n)p

.82(5). 04
-.89(5). 02
-.96(4). 02

-.84(6). 02

-.87(5). 03
.98(5). 001

.76(6). 04
-.99(3). 05
.82(5). 04

-.73(6). 05

.98(5). 002

-.80(5). 05

Variable
CHLA r(n)p

#
-.88(5). 03

.98(5). 001

-.93(6). 004
.74(6). 04
-.93(6). 004

-.83(5). 04
.98(5). 002
-.95(4). 02
.99(4). 01
-.98(4)'. 01
.99(4). 005
.96(6). 001
-.72(6). 05

.80(5). 05

.91(4). 04"

.98(4). 01
-.97(4). 01

# missing data equals pX).05
* secchi is log transformed
** PCHL equals phytoplankton chlorophyll
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2 suggests that there is competition for light. Jorgensen (1957)

observed this in two eutrophic Danish lakes, as did Vetzel (1964) in

shallow, saline Borax Lake.

Periphyton growth at station 2 correlated with PO^-P (r=0.82,

p=0.04) (Table 8) only in fall 1979 when P(\-P concentrations were the

lowest. There was an inverse relationship between AFDW and NH3-N in

spring (r=-0.96, p=0.02) (Table 8). This can be attributed to

stratification events in conjunction with phytoplankton dynamics. The

spring decrease of NH3-N occurred as phytoplankton increased and

stratification began. Because the periphyton did not respond to the

pulses of nitrogen that occurred' in August, it appears that light is the

primary factor and nitrogen the secondary factor limiting periphyton in

Inner Las Vegas Bay.

Nutrient concentrations are reduced by phytoplankton uptake and

dilution (Baker and Paulson 1980) of the Las Vegas Wash inflow as it

moves toward Hoover Dam. Periphyton and phytoplankton production were

reduced accordingly at limnetic station 5. Periphyton and phytoplankton

gradually increased during spring and summer at station 5« The growth

peaks of the two communities, however, were offset. Lowest periphyton

production coincided with highest'phytoplankton standing crop (23

September 1980) and very low concentrations of PO^-P, NH3-N, and

N02+N03-N (2, 2, and 14 ug/1 respectively). Nitrogen was depleted during

most of the stratified period at station 5. Peak periphyton production

occurred in December 1980, with a smaller peak in May. Nitrogen data

were not available for December 1980, but periphyton chlorophyll-a

correlated strongly with NH3-N in fall 1980 (r=0.96, p=0.00l) (Table 8).
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In addition, the growth peak in May occurred after a pulse in NH3-N.

Since secchi depth was below sampler depth, light was not a limiting

factor. Nitrogen was, therefore, the most probable factor limiting

periphyton growth at this location.

Periphyton and phytoplankton growth at station 8 was reduced even

further by decreased nutrient supply, although phytoplankton standing

crop was still two times and periphyton standing crop three times higher

than Virgin Basin (station 9). The peak AFDW accumulation rate during

winter at limnetic station 8 was not reflected in chlorophyll-a

measurements. There was a build-up of Cymbella affinis stalk material

and associated bacteria on the substrates, with live cells limited.to

the surface layer. Growth rate estimates by AFDW may have been

artificially high during this period. The influence of the Colorado

River could be seen in higher N02+NO.-N concentrations at station 8 than

at station 5« Phosphorus and nitrogen reached undetectable levels at

station 8 periodically in summer and fall. Seasonal inorganic N:P ratios

ranged from 67 in spring to 16 during summer stratification. On isolated

occasions, the ratio was less than 5- It appears phosphorus and nitrogen

were alternately limiting, although there were no statistically

significant relationships.

Upper lake stations 9 and 10 were characterized by the nutrient

regime of the Colorado River and were independent of Las Vegas Wash

influence. Algae productivity was low. Ortho-phosphorus was below

detectable limits from August through October and apparently too low to

allow phytoplankton to deplete N02+N03-N (Paulson and Baker 1979). Peak

AFDV was measured at limnetic stations in summer before PO^-P depletion.
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With seasonal N:P ratios greater than 100, phosphorus must certainly be

a limiting growth factor in the upper basin.

Phosphorus reduction by advanced wastewater treatment is being

implemented to reduce phytoplankton productivity in Las Vegas Bay. If

light is limiting periphyton in Las Vegas Bay as evidence suggests, and

there is shading of periphyton by phytoplankton, reduction in

phytoplankton could result in an increase in periphyton. Lakes with low

nutrients and phytoplankton growth can still support high periphyton

growth (Moss 1968). Smrchek et al. (1976) found tertiary treated

effluents significantly stimulated periphyton growth in laboratory

streams. Although water clarity would increase, some beneficial uses

could be adversely affected by decreases in phytoplankton. This shift

would have repercussions on fisheries by reducing food supply, on

swimming by increasing attached algae on beaches, and on boating by

requiring increased boat maintenance. Periphyton studies on natural

substrates and boat hulls would be required to define the extent of

these potential impacts.
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Appendix A.

LIMNETIC

COLLECTION
DATE *

STATION 2

9-07-79
9-19

10-03

10-23
11-21

12-20

1-25-80

3-07
3-25
4-15

5-02

5-15
5-29

6-16
6-30
7-25

8-07

8-21
9-08

9-23
10-07

10-20

11-06
11-20

12-09

17
12
29
14
43
21
28
49
30
79
36
66
30
15
21
36
17
53
13
14
27
14
14
25
39
13
52
14
18
32
15
13
28
13
41
17
14
31
19

AFDW_
ing-m 2-d 1
(n=2)

518(95)**
275(8)
379 #
357(58)
1014
496(212)
96(4)
376
450(30)
33
261(6)

44(4)
326( 34 )
238( 87 )
244
44K 54 )
290
869( 179 )
1072( 187 )
859
514(14)
300(72)
568
374
308(78)
1023
414(43)
206(6)
2038
446
392(179)
1057
362( 54 )
1102
424(24)
242( 72 )
110
216(27)

CHLA

(?=3()

APA
2'd l runoles

m 2>min
PO^-
-1(n=3)

1.16(0)

1.06
1.12(
0.21
1.42(
0.34(
1.23
2.65(
0.03
0.94(

2.10(
3.07(
1.02
0.98(
ND##
0.88(

.06)

.23)

.04)

.63)

.09)

.91)

.11)

.25)

.88)
9.20(1.38)
3.22
5.52(
1.78(
2.68
1.22
1.50(
0.08
1.44(
1.54(
0.28
1.76(
3.26(
1.74
4-47(
2.42
5.34(
5.68(
2.13
3-45(

1.29)
.28)

.69)

.20)

.69)

.88)
1.15)

.20)

.18)

.86)

• 3D

0.

1.

2.

0.

0.
1.

0.

0.
4.

1.
0.
1.

0.

0.
1.

0.
0.

0.

0.
0.

0.

5500(

1988(

7242(

3109(

4452(
1628(

6480(

3734(
4942(

4497(
2761(
7095(

1856(

0530(
4192(

8093(

.0137)

.0016)

.1076

.0208)

.1134)

.0504)

.0519)

.0388)

.4628)

. 1006 )

.0414)

.0389

.0141)

.0122)

.0092)

.0197)
6184(0)

6470(

9140(
0694(

1993(

.0111)

.0277)

.0051)

.0025)

LITTORAL
AFDW

(?=2)

264(6)
242(42)
303
228
298
296( 10 )
160( 33 )
376
114(6)
81
92(12)
109

343(0)
93(7)
116(28)
51
62(0)
431
336(108)
1361(17)
962
346(67)
254(23)
1385
62(0)
536
82( 12 )
50(7)

53(0)

CHLA

<?=3)

0.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.

4.
0.
1.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
1.
1.

1.

60(

70
66
42
90(
82(
32
87(
59
94(
88

03(
96(
47(
49
40(
44
5l(
06(
03
70(
00(
40
33(
07
12 (
OK

44(

2-d~

.04)

.30)

.37)

.20)

.19)

.19)

.70)

.10)

.41)

.31)

.01)

.02)

.17)

.08)

.15)

.16)

.13)

.08)
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Appendix A continued.

LIMNETIC

COLLECTION
DATE *

STATION 5

9-07-79 17
9-14 12

29
10-03 14

43
10-23 21
11-21 28

49
12-20 57
1-25-80 37

3-25
4-15

5-02

5-15
5-29

6-16

6-30
7-25

8-07

8-21
9-08

9-23
10-07

10-20

11-06
11-20

12-09

66
15
21
36
17
53
13
14
27
18
45
14
25
39
13
52
14
18
32
15
13
28
13
41
17
14
31
19

AFDW
mg-m'^d""1
(n=2)

210(43)
124(16)
289
66(14)
86( 19 )
850
147(6)
196
554(218)
222( 65 )

300( 123 )
876
171( 0 )

338(16)
615
300( 101 )
289(79)
394
47(20)
376( 85 )
357
108(16)
995
282(95)
186( 101 )
361
821(21)

CHLA_

(?=3) '

0.99(.17)
1.66(.22).

0.68(.07)
0.46(.06)
ND
0.99(.20)
0.34
3.55(.57)
1.28(.60)

0.36(.03)
0.17
0.23C.01)

1.54(-49)
1.59
0.88(.08)
1.11( .08)
1.24
0.20(.12)
0.96(.06).
1.01
2.32( .11)
0.96
3.94(.87)
1.98(.20)
3.99
8.23(.43)

LITTORAL
APA AFDW_
ninoles PO^- ing-ni -d
m~2.min~1(n=3) (n=2)

6.3812(.1410)
0.3157(.0529)

0.0853( .0232)
13.2386(3-1662)

1.0780( .0590)

3-5995(.0976)
6.2383(.4619)

1.1757(.0673)

3.1212(.1577)

1.8407( .0471)
3.9758(.2246)

'0.9009(.0720)
2.8572(0.0333)

0.2341(.0128)

3.6535(.245l)
0.2170(.0040)

0.8684(0)

230(18)
158(25)
310
150(7)
646
210( 58 )
121
347

42(6)

154(6)
152(19)
156
47(23)
102
376(54)
100( 14 )
67
134(23)
89
292(22)
408(48)
200
369

240( 81 )
162( 39 )
307
331(70)
756
482(12)
307( 80 )

647( 165 )

CHLA

(?=3) '

0.25(.03)
0.47( .01)
0.43
0.20(.08)
0.55
0.68(.12)
0.68(.3l)
0.13

0.46(.0l)
1.05( .22)
0.46
0.14(.04)
0.09
1.42(0)
0.30(0)
0.22
0.24(.03)
0.12
0.30( .01)
0.41
0.34
0.58

0.64(-22)
2.03(1.55)
0.94
5 . 10( . 70 )
3.72
3-92(.08)
1.83(.67)

7.56(1.44)
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Appendix A continued.

LIMNETIC

COLLECTION
DATE *

STATION 8

9-07-79
9-19

10-03

10-23
11-21

12-20

1-25-80

3-07
3-25
4-15

5-03

5-15
5-29

6-16

6-30
7-25

8-07

8-21
9-08

9-23
10-07

10-20

11-06
11-20

12-09

17
12
29

43
20
29
49
57
78
36
66
31
15
21
36
17
53
13
14
27
18
45
14
25
39
13
52
14
18
32
15
13
28
13
41
17
14
31
19

AFDW
-2 ,-]

(n=2) '

295(42)

220(21)
331
71(0)
40(0)
10(0)
33
35(12)
23
ND
21(7)
30
28(6)
84 •
122(65)
21(5)
64
185

28(6)

40(0)
15(0)
43
31
410

14(0)
6

CHLA_
1 mg-in 2-d :
(n=3)

0.58(.16)

0.56(.15)

0.70(.02)
0.06(0)
0.09
0.06
0.05
0.03(.02)
ND
0.04
0.01(0)
0.01
0.02(.02)
0.02(0)
0.07
0.32

0.13( .01)

0.49(.12)
0.03(.0l)
0.05
0.41
1.18

0.03(0)
0.02

APA
nmoles P0i»-
m~2-min~1(n=3)

62.8052(19.046)

2.6072(.0576)

ND
0.2619(.0178)

0.1122(0)

0.0106( .0108)
0.0509(.0006)

0.0482(.0089)

0.1371( .0106)
0.3525(.0038)

2.9571(.0585)

0.5756(.033D

1.1862(.0158)
0.006l(.003l)

0.1726(.0086)

LITTORAL
AFDW_

<>2) '

100( 6 )
75(8)
90
42(15)
158
80(20)
100( 38 )
188
16(2)
244

66(14)

47(0)

46(0)
107(50)
148
116(6)
98
150(65)
144(0)
144
315(23)
192
128(15)
139(28)
269
67(0)
70(8)
250
154(31)
332
118(36)
186(43)

84(21)

CHLA
I ~2 -," 1mg-m 'd
(n=3)

0.08(.02)

0.26
0.04(0)
0.16
0.18(0)
0.52(.04)
0.24
0.12(.02)
0.15

0.39(.05)

0.04( .01)

0.02(0)
0.15(.05)
0.20
0.30(0)
0.22 •
0.15( .01)
0.29(.07)
0.11
0.93(.05)
0.52
0.58(0)
0.68( .11)
0.48
0.19
0.18( .01)
0.44
0.84(.12)
0.59
0.74(.04)
1.8l( .16)

1.09( .18)
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Appendix A continued.

LIMNETIC

COLLECTION
DATE

STATION 9

12-20-79
1-25-80
4-15

5-02

5-15
5-29

6-16

6-30
7-25

8-07

8-21
9-08

9-23
10-07

10-20

11-14

11-20
12-09

#

57
36
21
36
17
53
13
14
27
18
45
14
25
39
13
52
14
18
32
15
13
28
13
41
17
14
31
19

AFDW

(n=2)

" 64(11)
33(0)
ND
11
30(6)
30
23(8)
6(.5)
30
22(0)
67
186
20(4)
31
23(8)
35
7(7)
11(0)
19
6(6) '
23(8)
36
8(0)
68
2(.5)
19
14(0)

CHLA

Cn=3) '

0.43(.08)
0.10(0)
ND
0.04
0.02(.0l)
0.07
0.01(0)
O.Ol(.Ol)
0.07
ND
0.10
0.02(0)
ND
0.02
O.Ol(.Ol)
0.03
ND
0.02(.02)
0.02
ND
0.01(0)
0.13
O.Ol(.Ol)
0.44
0.02(0)
0.37
0.01(0)

APA
nmoles POi,-
m~2-min~1(n=3)

4.8289(.6714)
0.5337(.0366)

0.1369( .0168)

ND
0.0662 (.0092)

0.0721(.0056)

ND
0.2347(.0047)

0.0067( .0057)

ND
0.5352(.0202)

0.0035(.0035)
0.0218(.0108)

0.0169 (.0042)

ND

LITTORAL
AFDW

(5=2) '

41(6)

77(0)
50(7)
30
38(6)
27
143(58)
76(4)
102
54(8)
100
128(43)
28(17)
125
40(13)
31(0)
64
23(8)

18(6)
13
21(7)
16(6)

CHLA
mg-nT^d"1
(n=3)

0.12(0)

0.06(.04)
0.08(0)
0.07
0.03(0)
0.04
0.06(0)
0.08(0)
0.22
0.08(.02)
0.32
0.38( .11)
0.12(.04)
0.49
0.12(.02)
0.06( .02)
0.20
0.06(.02)

0.09(0)
0.01
0.02(.0l)
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Appendix A continued.

LIMNETIC

COLLECTION
DATE *

AFDW_
mg-m 2«d
(n=2)

CHLA_
1 mg-rn 2-d-1

(n=3)

APA
nmoles POi*.
m 2-min *(n=3)

LITTORAL
AFDW

— O ~~ '

mg • m • d
(n=2)

CHLA_
mg-rn
(n=3)

2-d"

STATION 10

9-19-79
10-03

10-26
11-21

12-20

1-25-80

3-25
5-02
5-15
5-29

6-16

6-30
7-25

8-07

8-21
9-08

9-23
10-07

10-20

11-20
12-09

29
14
43
23
26
49
55
78
36
66
18
17
13
14
27
18
45
14
25
39
13
52
14
18
32
15
13
28
13
41
14
19

55(0)
28

61(9)

100(16)
82
50(24)
176
39(24)
18(8)
31(0)
14(0)
15
22(0)
27
178( 11 )
32(0)
36
23(11)
27

11(0)

ND
15(0)
21
9(6)
73
8(2)

ND

0.
0.
0.
0.

1.
0.
0.
1.
0.
0.
0.
0.
0.

12(.05)
03(.0l)
11
02(.0l)

09(.12)
86
13( . 12 )
10
06(.03)
02(.0l)
01(0)
Ol(.Ol)
02

ND
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.

03
Ol(.Ol)
02(0)
03
01(0)

03(0)
10
03
03(.02)
24
05(.02)
45
01(0)

1.

3.

46.

1.

4498(

3764(

6145(

3044(

.0196)

.0452)

1.4387)

.1437)

48(0)
100(43)
93
83(13)
100( 15 )
118
45(9)
36
166(23)
352

0
0
0
0
0
0
0
0
0

• 13(
!o6(
.12
.15
.48(
.31
.24(
.29
.88(

.03)

.04)

.04)

.01)

.25)

' ND
0.
0.
0.

0,

0.
0.

0.

1.

0.
0.

0.

1562(
0613(
0519(

0342(

1094(
6708(

0968(

3783(

2381(
9976

0325(

.0308)

.0314)

.0076)

.0024)

.0056)

. 0360 )

.0301)

.0439)

.0066)

.0003)

47(0)
69(23)
93(7)
52
62(6)
142
192(79)
112(0)
185
77(15)
281
57(14)
56(0)
112
60(7)
38(8)
121
31(0)
161

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.08(.01)

.05(0)

.20(

.09
• IK-
.28
.13(
.64(
.29

.06)

.01)

.01)

.21)

.14(0)

.46
• lo\^

.55

.10(
• 19(
.38
.16(
.32

.06)

.01)

.11)

.04)

.04)

ND

* incubation (days )
** mean(S.E.)
# if no S.E. is presented, n=l
## ND equals nondetectable



Appendix B.

BACILLARIOPHYTA

Aahnanthes minutissima Kutz.
Arrrphipleura pelluaida Kutz.
Amphora aautiusoula Kutz.

coffeiformis (Ag. ) Kutz.
purpusilla Grun.

Anomoeoneis vitrea (Grun. ) Ross
Baeillaria paradoxa Gmelin
Cyclotetla atomus Hust.

glomerata Bachm
meneghiniana Kutz.

Cymbella sp. Ag.
affinis Kutz.
oymbiformis v. nonpunotata Font.
microaephala Grun.
minuta Hilse ex Rabh.
prostrates, v. auerswaldii (Rabh.) Reim
.pusilla Grun.
tumida (Breb. ex_ Kutz. ) V.H.

Fragilaria brevistriata Grun.
brevistriata v. inflata (Pant. ) Hust.
occpuoina Desm.
orotonensis Kitton

Gomphonema affine v. insigne (Greg.) Andrews
angustatian (Kutz. ) Rabh.
intricatwn Kutz.
intricatum v. vibrio (Ehr.) Cl.
olivacewn (Lyngbye) Kutz.
parvulim Kutz.
subclavatum (Grun.) Grun.

Mastogloia sp. Thwaites
smithii Thwaites
smithii v. lacustris Grun.

Melosira varians Ag.
Navicula sp. Bory

ainata (Ehr
halophila f

) Kutz.
tenuirostris Hust.

radios a Kutz.
radios a v. tenella (Breb. ) Grun.

Nitzsahia sp. Hassall
aoioularis W. Sm.
amphibia Grun.
dentieula Grun.
filiformis (W. Sm.) Hust.
graoilis Hantzsch
palea (Kutz.) W. Sm.
sublinearis Hust.
subrostrata Hust.

Rhoioosphenia curvata (Kutz.) Grun.
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Appendix B continued.

Rhopalodia gibba (Ehr. ) 0. Mull.
gibba v. ventriaosa (Kutz. ) H. & M. Perag.

Synedra sp. Ehr.
aaus Kutz.
aous v. radians (Kutz.) Must.
amphicephala Kutz.
nana Meister
radians Kutz.
tenera W. Sm.
ulna (Nitzsch) Ehr.
ulna v. subaequalis Grun.

CHLOROPHYTA

Cladophora sp. Kuetzing
Chlamydomonas sp. Ehr.
Mougeotia sp. Ag.
Oedogonium sp. Link
Oooystis sp. Naegeli

gigas Archer
Platydorina caudata Kofoid
Planotonema lauterborin-ii Schmidle
Soenedesrms abundans (Kirch) Chodat

quadrieauda (Turp.) Breb.
Sphaeroeystis sohroeteri Chodat
Sp-ivogyra sp. Link
St-igeoolonium sp. Kuetzing
Ulothr-ix sp. Kuetzing

CYANOPHYTA

Anabaena sp. Borg
Lyngbya sp. Ag.

aestuarii- (Mert. ) Liebmann
major Menegh.
perelegans Lemra.

Osci-llator-ia sp. Vaucher
amphibia Ag.
tenuis Ag.

Phormidiwn sp. Kuetzing
angustissimwn W. et G.S. West
favoswn (Bory) Gomont
tenue (Menegh. ) Gomont

Spirulina major Kuetzing

PYRROPHYTA

Peridinium aunningtonii (Lemm. ) Lemm.
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